
PATHA: Performance Analysis Tool for HPC
Applications

Wucherl Yoo⇤, Michelle Koo†, Yi Cao‡, Alex Sim⇤, Peter Nugent⇤†, Kesheng Wu⇤
⇤Lawrence Berkeley National Laboratory, Berkeley, CA, USA

†University of California at Berkeley, Berkeley, CA, USA
‡California Institute of Technology, Pasadena, CA, USA

Abstract—Large science projects rely on complex workflows
to analyze terabytes or petabytes of data. These jobs are
often running over thousands of CPU cores and simultaneously
performing data accesses, data movements, and computation. It
is difficult to identify bottlenecks or to debug the performance
issues in these large workflows. To address these challenges, we
have developed Performance Analysis Tool for HPC Applications
(PATHA) using the state-of-art open source big data processing
tools. Our framework can ingest system logs to extract key
performance measures, and apply the most sophisticated sta-
tistical tools and data mining methods on the performance data.
It utilizes an efficient data processing engine to allow users to
interactively analyze a large amount of different types of logs
and measurements. To illustrate the functionality of PATHA,
we conduct a case study on the workflows from an astronomy
project known as the Palomar Transient Factory (PTF). Our
study processed 1.6 TB of system logs collected on the NERSC
supercomputer Edison. Using PATHA, we were able to identify
performance bottlenecks, which reside in three tasks of PTF
workflow with the dependency on the density of celestial objects.

Index Terms—Performance analysis, Performance evaluation,
High performance computing

I. INTRODUCTION

Large science projects are increasingly relying on thousands
of CPUs to produce and analyze petabytes of data [12][20].
These jobs usually have thousands of concurrent operations
of data accesses, data movement, and computation. Under-
standing the performance characteristics of these complex
workflows and debugging their performance issues are chal-
lenging for various reasons. The concurrent data accesses may
compete with each other and with other jobs for accessing to
shared data storage and networking resources. The storage and
memory hierarchies on the current generation of hardware are
very complex, and therefore have performance characteristics
that are sometimes unexpected. Modern CPUs usually have
temperature-based throttling mechanisms that could be acti-
vated to reduce the clock rate to decrease heat production,
which can introduce unexpected delays. It is difficult for
the application developers to anticipate all such conditions
and dynamically to adjust the data processing workflows.
Therefore, it is common for large parallel jobs to experience
mysterious performance fluctuations. To help understand these
performance fluctuations and diagnose performance bottle-
necks, we have developed PATHA (Performance Analysis Tool
for HPC Applications).

There have been various performance modeling works for
scientific workflows under various conditions, for example, on
a CPU node [24], in the Grid environment [9][11], and in
the cloud environment [17][16]. However, the large scientific
workflows are frequently running on a large computer with
sophisticated storage and networking resources that are not
easily captured by the existing models. There are a large
number of other jobs competing for the same resources.
For example, the computer center, NERSC Edison [1] where
our tests run has about 5,000 users, and at any given time,
hundreds, sometimes even thousands of parallel jobs are
waiting in the batch queue to be executed. After dispatch-
ing, jobs all access the same file systems and networking
hardware for I/O and communication needs. In some cases,
different tasks even share the same computer node, where the
computations from different jobs can affect the performance
of each other. Additionally, most of the existing performance
models are based on simplified models of how the underlying
hardware functions. For example, the roofline model [24] is
based on theoretical maximum performance of CPUs, and
various I/O performance models are similarly based on the
maximum performance numbers that manufacturers provide.
In most cases, the observed performance is far from what
could be achieved according to these simplified models. One
may choose to develop more refined mathematical models,
however, in this work, we choose instead to pursue empirical
models based on the observed performance measurements.

The queuing system captures performance information in-
cluding memory usage, CPU time, and elapsed time. However,
such information is generally about the whole job, and more
fine-grained information is needed to understand the individual
steps of a large parallel workflow. Alternatively, the workflow
management system could record the performance information
of each step of a workflow [15], a profiler may be used to
automatically capture detailed performance information [19],
or the user may instrument selected operations with some
library functions [22]. In these cases, the performance data
is typically captured into log files, which require additional
processing to extract the timing measurements. Once the
timing measurements are available, we can apply statistical
and data mining tools to study the performance characteristics.

To make the maximal use of the user’s knowledge about
their own applications, we enable interactive exploration of the
performance data. To process a large amounts of performance



data, we use Apache Spark [27] in the backend to distribute
and parallelize computational work loads. The extensive anal-
ysis capability of Spark also means that PATHA can identify
performance bottlenecks through outlier detection and other
data mining techniques. PATHA further invokes popular infor-
mation from its visualization framework to provide interactive
visualization of these bottlenecks and their dependencies. In
addition, the efficient data handling capability of Spark allows
PATHA to quickly integrate new performance information as
it gathers from the log files.

We used the Palomar Transient Factory (PTF) [14][18]
application to evaluate PATHA by analyzing performance
measurement data collected on the NERSC Edison clus-
ter. The PTF application is a wide-field automated survey
that records images of variable and transient objects in the
sky [14][18]. Images from these cameras are sent and stored
to the NERSC Edison for processing through the near real-
time image subtraction data analysis pipeline. The timestamps
of the execution of each processing step in the pipeline
were recorded in the database. As the performance of the
PTF analysis pipeline has been optimized, its performance
analysis to find hidden performance bottlenecks is particularly
challenging. This difficulties is due to the manual efforts and
required expertise to generate queries on the database with
the requirements to avoid severe overhead on the production
database shared by many users. The PTF application has been
optimized to remove bottlenecks and inefficient operations by
developers. Through our study, we were able to verify that the
optimized versions were mostly efficient and the obvious bot-
tlenecks were removed. Using PATHA, we identified hidden
performance bottlenecks and their causes without incurring
large database overhead.

The contributions are:
• Develop PATHA to handle different types of measure-

ments from scientific applications,
• Design bottleneck detection methods in PATHA, e.g.,

execution time analysis and data dependency performance
analysis

• Evaluate PATHA using a big data application known as
PTF.

The rest of paper is organized as follows. Sec. II presents
related work. Sec. III demonstrates the design and implemen-
tation of PATHA. Sec. IV presents experimental evaluations,
and the conclusion and future work are in Sec. V.

II. RELATED WORK

Several performance tools have been proposed to improve
the performance of HPC applications. Shende et al. [19]
designed Tau to support monitoring parallel applications by
automatically inserting instrumentation routines. Böhme et
al. [5] presented an automatic mechanism which performs
instrumentation during compilation in order to identify the
causes of waiting periods for MPI applications. Burtscher
et al. [8] designed Perfexpert to automate identifying the
performance bottlenecks of HPC applications with predefined
rules. Adhianto et al. [2] designed HPCToolkit to measure

hardware events and to correlate the events with source code to
identify performance bottlenecks of parallel applications. The
detection mechanisms of these tools were heavily dependent
on manually created metrics and rules. Vampir [7] uses MPI
workers to parallelize performance analysis computations.
However, it lacks supporting distributing the computations
to multiple nodes. These performance tools lack distributing
and parallelizing the computations of the analysis to large
number of machines. Some tools such as Tau [19] and
Vampir [7] can parallelize computational loads MPI processes,
and potentially these MPI processes can be extended to
distribute multiple loads. However, this extension involve
significant implementation challenges due to synchronization
and inter-process communication comlexities and lack of
fault tolerance support. Instead, PATHA can interactively
analyze the large size application and system logs of scientific
workflows requiring large computation within user-tolerable
latency. Furthermore, PATHA can complement these tools
by providing mechanisms to distribute and parallelize the
computational loads in addition to fault tolerance feature from
read-only characteristics of RDDs.

There has been several performance modeling works for sci-
entific workflows. Williams at al. [24] proposed the Roofline
model about a theoretical model for analyzing upper bounds
of performance with given computational bottlenecks and
memory bottlenecks. Tikir et al. [23] proposed to use genetic
algorithms to predict achievable bandwidth from cache hit
rates for memory-bound HPC applications. Duan et al. [11]
proposed to use a hybrid Bayesian-neural network to predict
the execution time of scientific workflow in the Grid environ-
ment. In addition, performance models have been proposed
in other domains. Cohen et al. [10] proposed to learn an
ensemble of models using a tree-augmented Bayesian network
on a system trace, and cluster the signatures to identify
different regions of normality as well as recurrent performance
problems. Ironmodel [21] employed a decision tree to build the
performance model based on the queuing theory of expected
behavior from end-to-end traces. These performance models
are based on the simplified models or assumptions about
the executions on the underlying hardwares and cluster. Our
performance analysis is based on the empirical model without
sacrificing the complex interactions in the executions.

Researchers have proposed mechanisms to identify perfor-
mance problems in the cluster environment. Barham et al. [3]
proposed to use clustering to identify anomalous requests. Xu
et al. [25] proposed to find erroneous execution paths using
the PCA [13] on console logs. Bod et al. [4] used logistic
regression with L1 regularization on the vector of metric
quantiles to fingerprint performance crisis. They used online
sampling to estimate quantiles from hundreds of machines.
Yoo et al. [26] adapted machine learning mechanisms to
identify performance bottlenecks using fingerprints generated
from micro-benchmarks. These work can help our work
differentiate performance bottlenecks at cluster level and those
at application level. However, they also lack support to analyze
large size logs from scientific workflows.



Logs

Parser Application 
Log Parser

File System 
Log Parser

Job Log 
Parser

Application 
Logs

File System 
Logs

Job 
Logs

Analyzer Execution 
Time Analysis

Data dependency 
Analysis

Interactive 
Visualization

Distributed 
parallel 

Executions

Cluster Monitoring 
Log Parser

Cluster 
Monitoring Logs

...

...

...

RDDsRDDsRDDsRDDs

Fig. 1: The overview of PATHA.

Fig. 2: The interactive visualization framework.

III. DESIGN AND IMPLEMENTATION

Fig. 1 illustrates the overview of PATHA. PATHA is
implemented with a fast and general framework for big-
data processing, Apache Spark. It is used to distribute and
parallelize computational work loads at the parser and the
analyzer levels. The analyzer of PATHA supports:

• execution time analysis to find performance bottlenecks
and time consuming routines in applications,

• data dependency analysis to find possible causes of
performance bottlenecks

• interactive visualization synched with performance mea-
surements

PATHA consist of parser and analyzer that are implemented
with Apache Spark. At the parser level, the different types of
logs stored in parallel file system or database can be loaded
into distributed memory of the multiple nodes. Each parser is
implemented to parse different type of logs (application logs,
file system logs, job logs, and cluster monitoring logs) and
load them as a form of Resilient Distributed Datasets (RDDs).
The computations for parsing and loading multiple files or
separate partitions in each file are distributed and computed
in parallel in multiple cores and multiple nodes. Then, parsed
results are loaded into memories in multiple nodes or saved
in multiple files. By combining the functional programming

operators, PATHA provides performance analyses on different
types of logs and measurements in scientific cluster.

At the analyzer level, we provide the components of exe-
cution time analysis, data dependency performance analysis,
and interactive visualization framework as shown in Fig. 2.
The framework provides predefined set of functions to enable
users to conduct the performance analysis. RDDs loaded as
a form of rows of tuples can be computed in parallel by
using the functional programming operators such as map,
reduce, ‘group by key’, or ‘and sort by key’. In addition,
computations between RDDs such as join are supported. Users
can interactively conduct performance analysis either querying
results or generating graphs by combining with grouping,
aggregation, filtering operations with the interesting fields
or variables. This is to pinpoint the bottleneck locations in
the execution time analysis and identify the most significant
field in the data dependency analysis. In addition, it provides
the platform that users can use existing libraries of machine
learning and statistics in popular programming languages,
Java and Python, so that they can easily conduct feature
selection, clustering, classification, or regression analysis. Not
only conducting our predefined performance analysis, users
can implement their customized analysis by combining the
libraries on the loaded RDDs without consuming much time
on implementation of distributed and parallel programming.
The computations at the analyzer level are distributed and
computed in parallel in multiple cores and multiple nodes
similarly at the parser level. Apache Spark is deployed in a
separate cluster with several hundred nodes so that users can
interactively execute analyses after connecting to the cluster.
1 The crucial point is that underlying parallel execution of
PATHA is dispatched in multiple nodes and multiple cores in
each node without the user intervention. Therefore, PATHA
can handle large scale performance logs and measurements.

As for the example of the PTF application, the PTF
application logs are stored in the database. They are queried
with simple conditions such as dates that can reduce the size
of the query results. For execution time analysis, timestamps,
job id, task id and checkpoint id are loaded into RDDs.
The execution time at each checkpoint is computed for each
job and task. Then, the execution times are grouped by
different keys, e.g., job or task, and the average execution
times are computed with the keys. For this grouping, RDDs
are needed to include columns with distintive values to be used
as keys such as job id, task id and checkpoint id. During the
computation for the average, missing timestamps or unordered
timestamps are filtered out. These irregularities are caused by
various reasons, e.g., failures in the executions at application
level or system level. Filtering out these would be challenging
and costly to implement using database query or customized
user application. For data dependency performance analysis,
the execution times are computed with multiple associated

1The current version of Apache Spark is optimized for local file system
instead of parallel file system in scientific clusters. However, the most
performance analysis of PATHA is compute bound since most data movement
happens in parsing and loading time.



variables or fields that are potentially related to the identified
performance bottlenecks. With the interactive visualization
support, PATHA can identify key variables directly related to
the performance bottlenecks.

The performance analysis in Sec. IV was conducted with
our interactive visualization framework of PATHA, shown in
Fig. 8. It provides the visualization tools and figure outputs by
allowing users to integrate performance analysis with iPython
and web browser. Users can conduct execution time analysis
by querying different types of graphs such as histogram, bar
graph, box plot and scatter plot. This analysis framework
not only allows users to uncover performance bottlenecks
in terms of execution time, but also allows them to further
query and research possible sources of additional performance
bottlenecks related to the data dependency. The development
of this tool will continue to advance future research of
performance behavior characteristics.

IV. PTF CASE STUDY

A. Test Setup

To evaluate PATHA, we used the PTF logs collected on
NERSC Edison supercomputer from Mar. 19, 2015 to Jul.
18, 2015 (PST). The PTF application was executed on the
compute node with two 12-core CPUs, Intel xeon E5-2695
and 64 GB memory. We also used Apache Spark [27] to
distribute and parallelize computational loads for PATHA. It
allows more thorough investigation on the PTF application
measurements and derived values from the measurements such
as the average execution time by averaging differences of the
measured timestamps in multiple tasks in each job. PATHA for
the experiments was running on a cluster with several hundred
machines with two 8-core CPUs, Intel Xeon E5-2670 and 64
GB memory.

B. PTF Application

Astrophysics is transforming from a data-starved to a data-
swamped discipline, fundamentally changing the nature of
scientific inquiry and discovery. Currently there are four large-
scale photometric and spectroscopic surveys which generate
and/or utilize hundreds of gigabytes of data per day. One of
them is the Palomar Transient Factory (PTF) which focuses
on expanding our knowledge of transient phenomena, such
as supernova explosions and massive star eruptions [14]. The
transient detection survey component of PTF is performed
at the automated Palomar Samuel Oschin 48-inch Schmidt
telescope equipped with a camera that covers a sky area of
7.3 square degrees in a single snapshot. Data taken with the
camera are transferred to NERSC Edison where a realtime
reduction pipeline is run. The pipeline matches images taken
at different nights under different observing conditions and
performs image subtraction to search for transients. The
transient candidates out of this pipeline then pass through
machine-learning classifiers to be prioritized for real transients
over artifacts. The final output is then displayed through a
web portal for visual inspection by human. This pipeline

Fig. 3: The average amount of time in seconds that each oper-
ation takes. Each color represents one of the 38 checkpoints.

has achieved the goal of identifying optical transients within
minutes of images being taken.

To evaluate PATHA, we used the PTF Application for the
experiments. The execution of PTF application involves the
executions of multiple jobs. Each job computes different areas,
and it consists of 10 tasks whose checkpoints are stored in
database when each processing step is conducted. As shown
in Fig. 3, the PTF analysis pipeline consists of 38 checkpoints,
with each color representing a different checkpoint. Fig. 3
depicts the average amount of time in seconds that the PTF
analysis pipeline took on each day to execute all jobs and tasks.
From Fig. 3, it is evident that the top five checkpoints with the
longest execution time in the PTF pipeline are checkpoints 8,
25, 29, 31, and 36. The average daily percentage calculations
taken over a span of 64 days reveal that checkpoint 8 takes on
average 7.29%, checkpoint 25 takes 11.16%, checkpoint 29
takes 6.22%, checkpoint 31 takes 14.79%, and most notably,
checkpoint 36 takes 23.72% on average. The three checkpoints
that took the longest average execution times were further
investigated for a potential bottleneck where performance
could be improved.

C. Execution Time Analysis

Next, we dive into the time measurements of checkpoint
36, the Transients in the Local Universe (TILU) query - a
geometric query that correlates the incoming candidates with
the table of known galaxies with their elliptical shapes and
orientations. Fig. 4 shows the box plot of average execution
time of this query together with the performance outliers as red
dots. We see that many jobs took much longer time than the
average. From Fig. 4, we note that certain days, such as March
20, 2015, have larger variance and many outliers. However,
the day with the largest number of outliers, March 26, 2015,
actually does not have extremely high average execution time,
nor even necessarily high variances either. This piqued our
interest and we will next examine the execution time on this
day more carefully.

Fig. 5 shows a scatter plot of the amount of time in seconds
for each job throughout the day, starting at approximately



Fig. 4: The amount of time in seconds of each job of
checkpoint 36, where each vertical line is for one day, the light
green line marks the median time, the blue brackets mark the
IQR, the high whisker is at Q3+1.5⇥ IQR, and the red dots
mark the instances with extra long execution time.

Fig. 5: The amount of time in seconds per day for each job
of checkpoint 36, highlighting the average amount of time.

03:00 when the first task of checkpoint 36 was executed on
that day. It shows that an execution time spikes during the
time period from 12:20 to 13:06 on March 26, 2015. Next,
we look more carefully into this time window.

By focusing on the executions in specific time showing
significantly more execution times, we can discern whether
bottlenecks are caused by cluster load competing system
resources or caused by application-specific reasons Fig. 6
shows the time spent by each instance of TILU query in
the time window of 12:20 to 13:06. The length of each bar
in Fig. 6 reveals the total execution time of each job and
its corresponding PTF field. The jobs with longest execution
time have job ID 3182, 3189 and 3193 corresponding to
PTF fields 3292, 3291 and 14984 respectively. Interestingly,
the other PTF fields executed in the similar time window
with these PTF fields show much smaller execution times.
Since these instances of long execution time are interspersed
with very normal looking instances, we speculate that their
long execution times are not caused by system loads due to

Fig. 6: The execution times of all jobs with their corresponding
PTF field during the time period 12:20 to 13:06 on March 26,
2015.

Fig. 7: The average execution times of all PTF fields from
March 19, 2015 to July 18, 2015 for checkpoint 36.

competing shared resources. Next, we examine the possibility
that these long execution times are caused by differences in
user data involved in these queries.

D. Data Dependency Performance Analysis

Based on the suggestions from application scientists, we
next examine three PTF attributes to see how they affect the
execution time. These three attributes are: PTF field, number
of saved objects, and the galactic latitude.

PTF Field: Fig. 7 shows the average time of TILU queries
plotted against PTF fields, from March 19, 2015 to July 18,
2015. From Fig. 7, it is apparent that PTF field 2049 had the
longest average execution time.

To supplement the analysis of checkpoint 36 and to deter-
mine if other factors were correlated with the long execution
time of checkpoint 36, the two checkpoints (31 and 25) with
the 2nd and the 3rd longest execution times were further
observed in Fig. 8 and Fig. 9. Checkpoint 25 involves running
a program called hotpants that performs image subtraction,
and checkpoint 31 consists of running a machine learning
classifier, the Random forests [6]. Fig. 8 compares all three
checkpoints 36, 31, and 25 for execution times of all jobs on
March 26, 2015. It shows that the performance outliers exist
in checkpoint 25 and 36, while Fig. 9 displays the PTF fields



Fig. 8: The execution times of all jobs of checkpoints 36, 31,
and 25 on March 26, 2015.

Fig. 9: The execution times of all jobs of checkpoints 36, 31,
and 25 during the time 03:00 to 13:00 on March 26, 2015.

shared between all three checkpoints that have the longest
average execution time on the same date.

The total execution times of checkpoint 36, 31, and 25
are all shown in Fig. 8 and 9 for March 26, 2015, to
allow an easier execution time comparison among the three
checkpoints. Using results from Fig. 8 and 9, checkpoints 36,
31, and 25 were further researched by the shared PTF fields,
and the PTF fields with the longest execution times on March
26, 2015 are shown in Fig. 8.

Fig. 10: The average execution times in seconds for PTF fields
of checkpoints 36, 31, and 25 on March 26, 2015.

Fig. 11: The top PTF fields that have the longest execution
time of checkpoints 36, 31, and 25 from March 19, 2105 to
July 18, 2015.

Fig. 12: The average execution times of checkpoints 36, 31,
and 25 for each day of PTF field 2049 with the number of
measured tasks above each bar.

In addition to the results and calculations shown in Fig. 8
and 9, Fig. 10 was illustrated to find whether any correlations
exist between the execution times of the three checkpoints and
PTF fields. The executions with PTF field 22568 was shown
to have the longest shared average execution time due to the
longest execution time in checkpoint 36. Fig. 10 shows that
the weak correlation exists, and the execution times of the
three checkpoints are not always correlated each other.

In order to further analyze the correlations in these check-
points, the average execution times associated with the PTF
fields from March 19, 2015 to July 18, 2015 were illustrated
in Fig. 11 with the number of measured tasks above each
bar. This is to compare all three checkpoints with the shared
PTF fields that have the longest average execution times. It
is important to note that Fig. 11 shows that The executions
with PTF field 2049 was calculated to take the longest average
execution time of checkpoints 36, 31, and 25 combined. Since
the executions with PTF field 22568 showing the longest
execution time in Fig. 10 is not shown in this top PTF
fields during the 4 months, we further analyzed whether any
variances exist in the execution times associated with the PTF
fields.



(a) Checkpoint 31

(b) Checkpoint 36

Fig. 13: The average execution time of checkpoints 31 and 36
for each number of saved objects.

The executions with PTF field 2049 is illustrated in more
details in Fig. 12 with the dates when this field was observed.
While the performance bottleneck is related to the PTF fields,
the existing variances in the execution times of the particular
field confirms that the performance bottleneck is not directly
associated with the PTF fields.

Saved Objects: In order to find out other directly related
variables or fields, we used PATHA to plot more variables
with the average execution time depending on the variables.
Fig. 13 illustrates the average execution time of checkpoints 31
and 36 for each number of saved objects. While omitted from
this Fig., the checkpoint 25 shows the similar pattern as that of
31 and 36. In the PTF application, a fragmentation algorithm
is performed on the subtraction images to identify variable
stars and transient candidates over the noisy background and
to measure their shape parameters such as the length and angle
of its major axis and ellipticity. Then, a simple shape cut is
applied to remove elongated candidates which are probably
artifacts. The candidates that pass the shape cut are saved
for further examination, i.e., checkpoints after the checkpoint
25. The reason of different numbers of saved objects is
that the total number of candidates for further examination
is determined by the number of variable stars (since real
transients are rare), which in turn correlates with the total
number of stars in a given field. Fig. 13 shows the linear
relation between the average execution time and the number of

(a) Checkpoint 31

(b) Checkpoint 36

Fig. 14: The average execution times of checkpoints 31 and
36 for each absolute galactic latitude.

saved objects. 2 It shows the performance bottleneck in these
checkpoints when computed with the large number of stored
objects. This is because the large number of saved objects
requires more comparisons and computation. This identified
bottleneck would lead to reduce the computation time when
computing with the large number of stored objects.

Galactic Latitude: Fig. 14 illustrates a correlation between
the execution times of checkpoints 31 and 36 and the abso-
lute galactic latitude (zero degree corresponds to the Milky
Way plane). It shows the performance bottlenecks in these
checkpoints at low galactic latitudes (checkpoint 25 shows the
same performance bottleneck). The physical reason behind it
is that the closer a field is to the Milky Way, the more celestial
objects, the more transient/variable candidates, and the longer
execution time for these checkpoints. At low galactic latitudes,
i.e., close to the Milky Way plane, the stellar density is higher,
and so is the density of variable stars. Therefore, images taken
at low galactic latitudes in general generate more candidates
than those at high galactic latitudes.

V. CONCLUSION

We developed PATHA (Performance analysis Tool for HPC
Applications) using open source big data processing tools.
It provides the execution time analysis and data dependency

2The linear regression coefficients are 8.515⇥10�4 for checkpoint 35 and
5.673⇥ 10�3 for checkpoint 31.



performance analysis on different types of performance mea-
surements from scientific clusters. With the tool, users can
identify performance characteristics and performance bottle-
necks in their science applications and scientific clusters.
As the computations for the analysis are distributed and
parallelized in multiple nodes, the framework can handle the
measurements from large applications in exa-scale clusters.
In a case study involving the PTF application, we iden-
tified performance bottlenecks in checkpoints 25, 31, and
36. We also identified their direct data dependencies on the
number of saved objects and the absolute galactic latitude.
Developers of the PTF application have been working on
optimizing identified performance bottlenecks. As the future
work, we will extend PATHA to combine the measurements
of hardware executions in clusters and the measurements
from the applications. In addition, we will automate the
process of bottleneck identification. These will help identify
the performance bottlenecks due to the system related issues
along with the application related issues.

VI. ACKNOWLEDGMENTS

This work was supported by the Office of Advanced
Scientific Computing Research, Office of Science, the U.S.
Dept. of Energy, under Contract No. DE-AC02-05CH11231.
This work used resources of NERSC.

REFERENCES

[1] “Nersc edison,” https://www.nersc.gov/users/computational-systems/
edison/, 2015.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “HPCTOOLKIT: tools for performance
analysis of optimized parallel programs,” Concurr. Comput. : Pract.
Exper., vol. 22, no. 6, pp. 685–701, 2010.

[3] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using magpie for
request extraction and workload modelling,” in OSDI’04: Proceedings
of the 6th conference on Symposium on Opearting Systems Design &
Implementation. USENIX, Dec. 2004, pp. 259–272.

[4] P. Bod, U. C. Berkeley, M. Goldszmidt, A. Fox, U. C. Berkeley,
D. B. Woodard, H. Andersen, P. Bodik, M. Goldszmidt, A. Fox,
D. B. Woodard, and H. Andersen, “Fingerprinting the datacenter,” in
EuroSys’10: Proceedings of the 5th European conference on Computer
systems. New York, New York, USA: ACM, Apr. 2010, pp. 111–124.

[5] D. Bohme, M. Geimer, F. Wolf, and L. Arnold, “Identifying the
Root Causes of Wait States in Large-Scale Parallel Applications,” in
Proceedings of the 2010 39th International Conference on Parallel
Processing. IEEE, 2010, pp. 90–100.

[6] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct. 2001.

[7] H. Brunst, M. Winkler, W. E. Nagel, and H.-C. Hoppe, “Performance
optimization for large scale computing: The scalable vampir approach,”
in Computational Science-ICCS 2001. Springer, 2001, pp. 751–760.

[8] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and
J. Browne, “PerfExpert: An Easy-to-Use Performance Diagnosis Tool for
HPC Applications,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2010, pp. 1–11.

[9] J. Cao, D. Kerbyson, E. Papaefstathiou, and G. R. Nudd, “Performance
modeling of parallel and distributed computing using pace,” in Perfor-
mance, Computing, and Communications Conference, 2000. IPCCC ’00.
Conference Proceeding of the IEEE International, Feb 2000, pp. 485–
492.

[10] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons,
“Correlating Instrumentation Data to System States: A Building Block
for Automated Diagnosis and Control.” in OSDI, vol. 6. USENIX,
2004, pp. 231–244.

[11] R. Duan, F. Nadeem, J. Wang, Y. Zhang, R. Prodan, and T. Fahringer, “A
hybrid intelligent method for performance modeling and prediction of
workflow activities in grids,” in Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, ser.
CCGRID ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 339–347.

[12] T. Hey, S. Tansley, and K. Tolle, Eds., The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft, Oct. 2009.

[13] I. Jolliffe, “Principal Component Analysis,” in Wiley StatsRef: Statistics
Reference Online. John Wiley & Sons, Ltd, 2014.

[14] N. M. Law, S. R. Kulkarni, R. G. Dekany, E. O. Ofek, R. M.
Quimby, P. E. Nugent, J. Surace, C. C. Grillmair, J. S. Bloom,
M. M. Kasliwal, L. Bildsten, T. Brown, S. B. Cenko, D. Ciardi,
E. Croner, S. G. Djorgovski, J. v. Eyken, A. V. Filippenko, D. B.
Fox, A. Gal-Yam, D. Hale, N. Hamam, G. Helou, J. Henning, D. A.
Howell, J. Jacobsen, R. Laher, S. Mattingly, D. McKenna, A. Pickles,
D. Poznanski, G. Rahmer, A. Rau, W. Rosing, M. Shara, R. Smith,
D. Starr, M. Sullivan, V. Velur, R. Walters, and J. Zolkower, “The
palomar transient factory: System overview, performance, and first
results,” Publications of the Astronomical Society of the Pacific, vol.
121, no. 886, pp. pp. 1395–1408, 2009.

[15] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. B.
Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management
and the kepler system,” Concurrency and Computation: Practice and
Experience, vol. 18, no. 10, pp. 1039–1065, 2006.

[16] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost- and
deadline-constrained provisioning for scientific workflow ensembles in
iaas clouds,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC ’12.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 22:1–
22:11.

[17] A. Matsunaga and J. A. B. Fortes, “On the use of machine learning
to predict the time and resources consumed by applications,” in
Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, ser. CCGRID ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 495–504.

[18] F. Rusu, P. Nugent, and K. Wu, “Implementing the palomar transient fac-
tory real-time detection pipeline in GLADE: Results and observations,”
in Databases in Networked Information Systems, ser. Lecture Notes in
Computer Science, vol. 8381, 2014, pp. 53–66.

[19] S. S. Shende and A. D. Malony, “The TAU parallel performance system,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

[20] A. Shoshani and D. Rotem, Eds., Scientific Data Management:
Challenges, Technology, and Deployment. Chapman & Hall/CRC Press,
2010.

[21] E. Thereska and G. R. Ganger, “Ironmodel: robust performance models
in the wild,” ACM SIGMETRICS Performance Evaluation Review,
vol. 36, no. 1, pp. 253–264, Jun. 2008.

[22] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D. Gunter,
“The netlogger methodology for high performance distributed systems
performance analysis,” in High Performance Distributed Computing,
1998. Proceedings. The Seventh International Symposium on, Jul 1998,
pp. 260–267.

[23] M. Tikir, L. Carrington, E. Strohmaier, and A. Snavely, “A genetic
algorithms approach to modeling the performance of memory-bound
computations,” in Proceedings of the 2007 ACM/IEEE conference on
Supercomputing. ACM, 2007, p. 47.

[24] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, Apr. 2009.

[25] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in SOSP’09:
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, Oct. 2009, pp. 117–131.

[26] W. Yoo, K. Larson, L. Baugh, S. Kim, and R. H. Campbell, “ADP:
automated diagnosis of performance pathologies using hardware events,”
in Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE,
vol. 40. New York, New York, USA: ACM, Jun. 2012, pp. 283–294.

[27] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. USENIX, 2010.


